
oTherm GSHP analysis

Matt Davis

Jun 11, 2023

CONTENTS:

1 oTherm Project 3

2 Modules 5

3 analysis 7
3.1 analysis package . 7

4 db_tools 17
4.1 db_tools package . 17

5 oTherm Database Fields 23

6 Credits and Disclaimers 25
6.1 About the oTherm Project . 25
6.2 Disclaimer . 25

7 Indices and tables 27

Python Module Index 29

Index 31

i

ii

oTherm GSHP analysis

otherm_gshp is a collection of Python scripts to analyze data from an oTherm database instance that use ground
source heat pumps as the sole source of renewable thermal energy.

CONTENTS: 1

oTherm GSHP analysis

2 CONTENTS:

CHAPTER

ONE

OTHERM PROJECT

The oTherm project aims to standardize data collection methods for renewable thermal energy (RTE) systems, such as
heat pumps (air-source and ground-source), solar thermal, and biomass systems. While the initial focus on the project
has focused on ground source heat pump systems, the framework is extensible to other types of RTE systems.

Some of the challenges in the monitoring and verification (M&V) of RTE systems include:

• necessity for continuous data (approximately 1-minute resolution) of system energy flows, both thermal and
electric power

• need to continously monitor the temperature of the renewable thermal source

• need to contextualize observations with respect to the equipment, the building envelope and outdoor weather
conditions

• documentation of sensor accuracies for the quantification of uncertainty, which can be significant in RTE systems

These challenges often limit the number of facilities that can be included in an M&V program, most often ranging from
3 - 24, and make it exceeding difficult to combine data from multiple studies.

The oTherm project establishes a standarized data framework and software necessary to efficiently collect and analyze
data within a given M&V program. With the standardization of the data models, data from separate M&V program
can be easily included into cross-program analyses.

The initial work has been funded by the Renewable Thermal Alliance and the New York State Energy Research &
Development Authority. Continued work has been supported by the US Department of Energy, Office of State Energy
Programs. The collaborative research has been led by the University of New Hampshire in coordination with the Yale
School for the Environment.

3

oTherm GSHP analysis

4 Chapter 1. oTherm Project

CHAPTER

TWO

MODULES

The modules support the back-end interactions with an oTherm instance. They are provided as examples only.

5

oTherm GSHP analysis

6 Chapter 2. Modules

CHAPTER

THREE

ANALYSIS

This set of analysis modules uses the oTherm APIs to access oTherm data. See the API Documentation <https://otherm.
org/api_documentation> for more details. The more complex oTherm data is organized into dataclasses that use that
are ready for analysis. For example,

@dataclass
class ThermalLoad:

uuid: str
name: str
description: Optional[str]
conditioned_area: float
heating_design_load: float
cooling_design_load: float
heating_design_oat: float
cooling_design_oat: float

3.1 analysis package

The analysis packages provided provide some examples of the potential uses of oTherm GSHP data. These are provided
as is and have the following limitations:

• Each site has a single heat pump. The analyses presented can, in the future, be extended to multiple pieces of
equipment.

3.1.1 Modules

3.1.2 analysis.daily_summaries module

Calculation of daily performance metrics for a given piece of equipment (e.g. a heat pump). This function is also
embedded in oTherm instance and can be updated daily as a cron job. Included here to document methods and allow
for customization.

Daily metrics include, each integrated for one day:

• Heating and cooling degree days, relative to 65F base temperature

• Heat pump run time (hours)

• Heat pump energy usage (kWh)

• Auxiliary heat energy usage (kWh)

7

https://otherm.org/api_documentation
https://otherm.org/api_documentation

oTherm GSHP analysis

• Thermal energy generated by heat pump under heating and cooling modes (MBtu)

• Thermal energy exchanged with the ground (MBtu)

• Average outdoor air temperature (F)

• Source minimum and maximum temperatures (F)

• Number of monitoring records for day

Note: Modifying this script will not change calculations in oTherm instance. See oTherm instance administrator to
update codebase.

analysis.daily_summaries.create_daily_summaries(data, heatpump_threshold_watts)

Parameters

• data (pandas.DataFrame) – Heat pump operating data from oTherm db

• heatpump_threshold_watts (float) – Threshold to determine if heat pump is on or off.

Returns

• pandas.DataFrame

• The returned DataFrame contains daily summary metrics described above

3.1.3 analysis.load_summary module

analysis.load_summary.load_summary_graph(site, thermal_load, ds)

Parameters

• ds (DataFrame) – Pandas ddataframe containing daily summaries

• site (dict) – Dataclass object containing site information

3.1.4 analysis.ewt_violins module

Creates histograms of the heat pump entering water temperature averaged on hourly intervals using the Seaborn library.
When multiple site names are provided, histograms are plotted along the x axis and labeled with the site name.

When multiple sites are plotted, the seaborn.violinplot parameters are set to prodcue histograms that are equal width
with the area of each mode scaled to the relative number of hours in heating or cooling.

analysis.ewt_violins.determine_mode(row)

Parameters
row – a row in a pandas DataFrame

Returns
new column in the DataFrame, that identifies when heat pump is heating or cooling

analysis.ewt_violins.ewt_violins(site_names, start_date, end_date, db)

Parameters

• site_names (list) – A list of site names to include in analyis. Each site will have it’s own
violin plot

• start_date (str) – Start date of analysis in format ‘YYYY-MM-DD’

8 Chapter 3. analysis

oTherm GSHP analysis

• end_date (str) – End date of analysis in format ‘YYYY-MM-DD’

• timezone (str) – Timezone of installation

• db (str) – oTherm database to use for analysis

Returns
The image is written to a file in the ../temp_files directory

Return type
image file

Example output:

3.1.5 analysis.geoexchange_proxies module

3.1.6 analysis.hp_mfr_plots module

3.1.7 analysis.kwh_per_sf module

One particularly helpful analysis that can be accomplished with very simple monitoring equipment is the energy usage
as a function of conditioned area and outdoor air temperature. One application of this analysis offers an opportunity to
compare the efficiency of different technologies, such as air-source and ground-source heat pumps over a wide range
of outdoor weather conditions (e.g., Ueno and Loomis, 2015).

This module creates a scatterplot of energy use intensity as a function of average daily outdoor air temperature.

analysis.kwh_per_sf.kwh_vs_oat(site_names, start_date, end_date, db)

Parameters

• site_names (list) – List of site names, as strings

• start_date (str) – Beginning date of request, such as ‘2015-01-01’

• end_date (str) – End date of request

• symbol_colors (dict) – Dictionary of colors for graph symbols with site name as keys

3.1. analysis package 9

oTherm GSHP analysis

• db (str) – The name of the database to pull operating data from

Example output:

3.1.8 analysis.load_factor module

Because adoption of GSHP systems will often replace fossil-fuel fired systems and represent more energy intensive
appliances in a home, electric utilities are also interested in the load factors for typical residential GSHP systems and
the month-to-month variation in load factors over the course of a year. For the purposes here, the load factor is defined
as the ratio of the electricity consumed over a period of time, such as one month, to the consumption that would have
occurred if the peak demand operated over the entire month. The load factor ranges from 0 to 1, with higher values
representing more uniform and predictable demand.

𝐿𝑜𝑎𝑑𝐹𝑎𝑐𝑡𝑜𝑟 =
𝑘𝑊ℎ𝑢𝑠𝑒𝑑 𝑖𝑛 𝑝𝑒𝑟𝑖𝑜𝑑

𝑘𝑊𝑝𝑒𝑎𝑘 · (ℎ𝑜𝑢𝑟𝑠 𝑖𝑛 𝑝𝑒𝑟𝑖𝑜𝑑)

Note: runs correctly with limited oTherm data, still needs full testing

analysis.load_factor.generate_csv(data, site_name)

Parameters

• data (pandas.DataFrame) – Heat pump operating data with datetime index

• site_name (str) – Name of the site to analyze. At present, assumes a single heat pump at
each site.

Returns

Produces a csv file with the following columns:

10 Chapter 3. analysis

oTherm GSHP analysis

month_and_year year and month of analysis
Compressor (kWh) total energy consumption of compressor
Auxiliary (kWh) total energy consumption of compressor
Total Load (kWh) sum of Compressor and Auxiliary energy consumption
Compressor Peak (hourly) peak hourly electric power (kW) for compressor
Auxiliary Peak (hourly) peak hourly electric power (kW) for auxiliary
Total Peak (hourly) peak hourly electric power (kW) over period
Load Factor (Total) calculated load factor for month
intervals number of 1-minute interval data over month
completeness number of intervals divided by minutes in month

Return type
csv file

3.1.9 analysis.spf_with_uncertainty module

The seasonal performance factor (SPF) is a metric used to evaluate the performance of installed heat pumps. SPF
values are sometimes separated into monthly values or values binned on ranges of entering water temperatures.

In heating mode, the SPF is calculated similarly to the COP. The difference is that COP values are determined under
laboratory conditions while the SPF values are calculated using real-world operational data. Further, while COPs are
measured with laboratory-grade equipment, calculation of SPFs may use estimated or proxy values in lieu of measured
values, depending on the availability and quality of data. The heating SPF is calculated as the ratio of the heating or
cooling provided and the electricity used to generate the heating or cooling:

𝑆𝑃𝐹 =
Heating or Cooling Provided [kWh]

Electricity Used [kWh]

When calculating SPF values, it is important to note the boundaries of the analysis. Spitler and Gehlin (2020) build
upon the SEPEMO boundaries defined by Nordman and others (2012) to delineate a set of nested boundaries the include
successively more components of the system.

Uncertainty Analysis One of the primary challenges in analyzing SPF values and comparing them between systems
or with laboratory-rate COP values is the uncertainty associated with measurements used to calculate the SPF values.
All measurements have some degree of associated uncertainty, but field measurements used to calculate SPF values
generally are obtained with lower quality sensors than those used the laboratory to calculate COP values. As a result,
they have a larger uncertainty due to sensor bias. Most studies that report measured performance (COP or SPF) do not
quantify uncertainty (e.g., Puttagunta et al., 2010; Huelman et al., 2016) even though it can be significant.

Uncertainty due to sensor bias can be absolute or fractional. Absolute uncertainty has the same units as the value being
measured. Fractional uncertainty is a fraction of the measured value. While the sensor bias for a given sensor will be
constant, the impact on the uncertainty of the calculated SPF depends on the measured value, which changes in time.
This is of particular concern with the uncertainty of a measure of temperature difference.

Calculating the SPF of GSHP systems relies on quantifying the geoexchange (thermal energy exchanged with the
subsurface) and the electricity used by the GSHP system. Quantifying the geoexchange requires taking the product
of density and specific heat capacity of the heat transfer fluid, the mass flow rate of the heat transfer fluid, and the
temperature change of the heat transfer fluid across the heat pump. The uncertainties in the density and specific heat
capacity values are very small relative to the other uncertainties and are typically ignored (Spitler et al., in prep). The
temperature change of the heat transfer fluid has a constant absolute uncertainty, meaning that the true temperature
change is within a fixed number of degrees from the measured value. Electricity usage measurements can have a
fractional or absolute uncertainty, depending on the measurement method.

Because the uncertainty of geoexchange and the electrical consumption of the GSHP system (EQ and Ew, respectively)
can change depending on the actual conditions, the uncertainty must be calculated separately for each timestep in the

3.1. analysis package 11

oTherm GSHP analysis

period of interest. Following Taylor (1997), the fractional uncertainty for thermal energy exchanged with the subsurface
and the electrical consumption (eQ and eW, respectively) can then be calculated as:

𝑒𝑄,𝑛 =

∑︀𝑛
𝑖=1 𝐸𝑄,𝑛∑︀𝑛
𝑖=1 𝑄𝑖

𝑒𝑊,𝑛 =

∑︀𝑛
𝑖=1 𝐸𝑊,𝑛∑︀𝑛
𝑖=1 𝑊𝑖

Where Qi and Wi are the measured values of the geoexchange and electrical consumption, respectively. The quantities
are summed over n time intervals, typically each 1-minute in duration.

The fractional uncertainty of the SPF value can then be obtained by adding the fractional uncertainties of the thermal
energy exchanged with the subsurface and the electrical consumption of the GSHP system in quadrature:

𝑒𝑆𝑃𝐹,𝑛 =
√︀

(𝑒2𝑄,𝑛 + 𝑒2𝑊,𝑛)

While this description of uncertainty analysis focuses on SPF calculations, as they involve multiple types of measure-
ments, uncertainty analysis should also be performed when calculating and reporting other key performance indicators.

Example output:

@author: Ryan Chase, University of New
Hampshire

analysis.spf_with_uncertainty.lag_temps(initial_data)
Lag temperature measurements by one value. Necessary for on-pipe measurements. Assumes that operating data
is at minute-resolution and thermal response of temperature sensors is approximately one minute.

Parameters
initial_data (pd.DataFrame) – Data as initially pulled from database.

Returns

Dataframe with lagged temperature measurements. Additional column is as follows:

DeltaT circulating fluid temperature change (as float)

Return type
pd.DataFrame

12 Chapter 3. analysis

oTherm GSHP analysis

analysis.spf_with_uncertainty.to_kilowatts(data, derate, power_fac)
Unit conversion and electricity usage/heat rate adjustments.

Converts heat flow from btu/hr to kW and electricity from W to kW. Scales heat flow and electricity consumption
values.

Parameters

• data (pd.DataFrame) – Heat pump operational data.

• derate (float) – Scales heat flow values.

• power_fac (float) – Scales electricity usage.

Returns

Dataframe with unit conversion and necessary scaling applied to electricity usage and heatflow.
Additional columns are as follows:

q heat flow in kW with scaling (as float)
kw_used electricity usage in kW with scaling (as float)

Return type
pd.DataFrame

analysis.spf_with_uncertainty.error_heat_from_ground(mrl_hr, E_deltaT, e_v, data)
Calculates error associated with heat transfer from ground.

Converts heat flow from btu/hr to kW and electricity from W to kW. Scales heat flow and electricity consumption
values.

Parameters

• mrl_hr (float) – Max record length in hours.

• E_deltaT (float) – Absolute uncertainty in temperature change of circulating fluid.

• e_v (float) – Flow rate fractional error.

• data (pd.Dateframe) – Heatpump operational data.

Returns

Dataframe with additional columns associated with error in heat exchange rates. Additional
columns are as follows:

e_deltaT fractional uncertainty deltaT (as float)
e_q fractional uncertainty heat transfer rate (as float)
E_q absolute uncertainty heat transfer rate (as float)
tvalue date time (as datetime64[ns, UTC])
timedelta time since last timestep (as timedelta64[ns])
elapsed_hours hours since last timestep (as float)
E_Q absolute uncertainity in kWh to/from ground (as float)

Return type
pd.DataFrame

3.1. analysis package 13

oTherm GSHP analysis

analysis.spf_with_uncertainty.elec_error_single_elec_measurement(e_e, error_data)
Calculates absolute electrical error.

For datasets that include a single electricity consumption value. Calculates absolute electrical error for each
timestep in kWh.

Parameters

• e_e (float) – Fractional uncertainty of electricity usage.

• error_data (pd.Dateframe) – Heatpump operational data.

Returns

Dataframe with additional column for electricity usage uncertainty. Additional column is as
follows:

E_W absolute electrical uncertainity in kWh (as float)

Return type
pd.DataFrame

analysis.spf_with_uncertainty.heat_calcs_single_elec_measurement(error_data, pump_power)
Calculates heat flow and electricity usage during heating periods.

For datasets that include a single electricity consumption value. Considers electricity consumption of single
stage circulating pump that will not contribute useful heat to building.

Parameters

• error_data (pd.Dateframe) – Heatpump operational data.

• pump_power (float) – Electricity consumption of single stage circulating pump.

Returns

Dataframe with additional columns associated with heatflow and electricity consumption. Addi-
tional columns are as follows:

electricity_kWh electricity kWh used in heating mode (as float)
hfg heat from ground in kWh (as float)
pump_power pump electricity usage in Kw (as float)
heat_provided heat provided to building in kWh (as float)

Return type
pd.DataFrame

analysis.spf_with_uncertainty.total_heat_sum_error(spf_heat_data)
Total values for heating and overall heating spf.

Uses heating operational data. Calculate total heat extracted from ground and absolute error. Also calculates spf
and fractional error.

Parameters
spf_heat_data (pd.Dateframe) – Heatpump operational data during heating.

Returns

• total_ground_heat (float) – Total heat from ground in kWh.

• total_gh_error (float) – Absolute error of total heat from ground in kWh.

14 Chapter 3. analysis

oTherm GSHP analysis

• total_heat_spf (float) – Heating spf.

• ah_e_spf (float) – Heating fractional uncertainity of SPF.

analysis.spf_with_uncertainty.monthly_ground_heat(spf_heat_data, percent_max)
Calculates monthly heat flow and spf values for plotting.

Resamples data to monthly values. Determines which months have signifigant heating loads to be plotted. Cal-
culates monthly spf values and absolute uncertainty for plotting.

Parameters

• spf_heat_data (pd.Dateframe) – Heatpump operational data during heating.

• percent_max (float) – Multipled by highest heating month to determine minimum kWh
to plot.

Returns

Dataframe with additional columns associated with monthly heatflow and spf. Additional
columns are as follows:

year year of each timestep (as str)
month_and_year year and month of each timestep (as str)
monthly_heating_spf heating spf value for month (as float)
fhe heating fractional uncertainity (as float)
fee electric fractional uncertainity (as float)
e_spf fractional uncertainity heating SPF (as float)
E_spf absolute uncertainity heating SPF (as float)

Return type
pd.DataFrame

3.1.10 analysis.time_of_day_usage module

There is a growing interest in quantifying hourly demand profiles for building heat and cooling to manage generation
assets and explore models for demand-response programs (e.g., National Academies, 2021). While heat pump usage
patterns tend to vary with season – with winters having higher demand in morning and summer a higher demand in
the afternoon – specific usage patterns depend on preferences of building occupants and individual usage patterns.
Quantifying patterns of usage across a large number of heat pumps in a given regions will help to inform utilities in
forecasting weather-dependent generation patterns and identify opportunities for demand response measures.

This module calculates the aggregate statistics for kW on an hourly, time-of-day basis Currently calculates mean and
90th quantile for each hour and creates matplotlib plot. It is currently set up for a single year but should be extendable
to multiple years.

analysis.time_of_day_usage.hourly_daily_stats(site, hp_data)

Parameters

• site –

• hp_data –

Example output:

3.1. analysis package 15

oTherm GSHP analysis

16 Chapter 3. analysis

CHAPTER

FOUR

DB_TOOLS

A collection of scripts that enable uploading and downloading of data from an oTherm instance

4.1 db_tools package

4.1.1 Modules

There are two essential database scripts. The first is to write a set of influxDB line protocol text files that can be
uploaded to the oTherm database, and the second is a set of functions that use API requests to retrieve and store data
into local pandas.DataFrame and dataclass objects.

4.1.2 db_tools.influx_lp_writer module

4.1.3 db_tools.otherm_db_reader module

A collection of functions that use oTherm APIs to retrieve data from an oTherm instance. The typical application is to
first retrieve the site data. Then, using the site dataclass object, retrieve information about the:

• weather_station,

• thermal_load,

• monitoring_system, and

• heat_pump_data.

The tools also contain scripts for:

• Retrieving the specifications for any oTherm monitoring system by the name of the monitoring system, and

• Retrieving heat pump peformance data from a local SQLite database (note, the SQLite database is not part of the
oTherm database.

Note: The names and types of data elements used in the analyses differ from the oTherm data model specification.

The dataclass objects use for analysis are constructed from json objects returned from the oTherm database. However,
because the dataclass objects represent a single instance, the data elements are reorganized into a simpler representation
than the original json response.

17

oTherm GSHP analysis

Example

The input typically consists of a site_name and start and end dates. The functions can be called from analyses modules.
For example

site_name = 'GES649'
start_date = '2015-01-01'
end_date = '2021-01-01'

#Get site information
site = get_site_info(site_name)

#Get equipment information and dataframe of heat pump operating data
equipment, hp_data = get_equipment_data(site.id, start_date, end_date, site.timezone)

#Get monitoring system information and measurement specifications
equip_monitoring_system = get_equipment_monitoring_system(equipment.id)

#Get weather data for station
wx_data = get_weather_data(site.weather_station.nws_id, site.timezone, start_date, end_
→˓date)

#Get thermal source specifications
source_specs = get_source_specs(site)

db_tools.otherm_db_reader.get_site_info(site_name, db)
get site info docstring

Parameters
site_name (str) – name of oTherm site

Returns

The site object consists is a nested dataclass object

@dataclass
class Site:

id: int
name: str
city: str
state: str
timezone: str
thermal_load: ThermalLoad
weather_station: WeatherStation

To access data elements, use the dot syntax. For example, the Weather Station ID, is accessed by

>>> site.weather_station
'KPSM'

db_tools.otherm_db_reader.get_thermal_load(site, db)

Dataclass object with equipment specifications ::
@dataclass class ThermalLoad:

uuid: str name: str description: Optional[str] conditioned_area: float heating_design_load: float
cooling_design_load: float heating_design_oat: float cooling_design_oat: float

18 Chapter 4. db_tools

oTherm GSHP analysis

To access data elements, use the dot syntax. For example, the Weather Station ID, is accessed by

db_tools.otherm_db_reader.get_equipment(site_id, db)
Uses ‘request’ method to read equipment table for a specific site

Parameters
site_id (int) – The site_id in the PostgreSQL database. Can be obtained from site.id

Returns

Equipment dataclass contains equipment information in the following fields

@dataclass

class Equipment:
id: int uuid: str model: str description: Optional[str] no_flowmeter_flowrate: float type: int
site: int manufacturer: int

db_tools.otherm_db_reader.get_equipment_data(site_id, start_date, end_date, timezone, db)
Uses ‘request’ method to reads heat pump operating data from otherm influx database and returns a pandas
dataframe. The data DataFrame returned includes all records for the equipment at a site. At present, the script
is limited to a single piece of equipment at a site.

Parameters

• site_id (int) – The site_id in the PostgreSQL database. Can be obtained from site.id

• start_date (str) – start date (e.g. 2018-1-1)

• end_date (str) – end date (e.g. 2018-12-31)

• timezone (str) – (e.g. ‘US/Eastern’)

Returns

Equipment dataclass contains equipment information in the following fields:

@dataclass
class Equipment:

id: int
uuid: str
model: str
description: Optional[str]
no_flowmeter_flowrate: float
type: int
site: int
manufacturer: int

pandas.DataFrame containing heat pump operating data over the specified time range. The
DataFrame contains all fields stored for the piece of equipment in the influxDB database.

Note: The index of the DataFrame is set to the time field and localized according the site.
timezone attribute

db_tools.otherm_db_reader.get_equipment_monitoring_system(equip_id)
Retrieves the equipment monitoring system and specifications

4.1. db_tools package 19

oTherm GSHP analysis

Parameters
uuid (str) – uuid of thermal equipment

Returns

Dataclass object with equipment monitoring system specifications

@dataclass
class MonitoringSysInfo:

id: int
name: Optional[str]
description: Optional[str]
specs: list

@dataclass
class EquipmentMonitor:

id: int
start_date: str
end_date: Optional[str]
equip_id: int
monitoring_system_spec: int
info: MonitoringSysInfo

To access data elements, use the dot syntax. For example, the list containing the monitoring system specifications
can be accessed by

>>> monitoring_system.info.specs
`[{'measurement_spec': {'name': 'HPP VA W 8% EP', 'description': 'Heat pump power,␣
→˓volt-amps, electrical panel', ...`

The monitoring system specifications is a list of measurements performed by the monitoring system, each mea-
surement has its own set of specifications. See oTherm documentation for more details.

The list can be search for individual measurements specifications with utilities.get_measurement_specs

db_tools.otherm_db_reader.get_weather_data(nws_id, timezone, start_date, end_date)

Parameters

• nws_id (str) – National Weather Station 4 character station identifier

• timezone (str) – Timezone of site, such as ‘US/Eastern’

• start_date (str) – Beginning date of request, such as ‘2015-01-01’

• end_date (str) – End date of request

Returns

• pandas.DataFrame

– The returned DataFrame contains weather station data over the specified time range
and contains all fields stored for the weather station.

Note: The index of the DataFrame is set to the time field and localized according the site.
timezone attribute

db_tools.otherm_db_reader.get_source_specs(site)
Retrieves the source specifications.

20 Chapter 4. db_tools

oTherm GSHP analysis

Parameters
site (str) – site name

Returns

Dataclass object with source specifications

@dataclass
class SourceSpec:

site: str
site_id: int
source_name: str
source_type: str
description: str
freeze_protection: Optional[float]
grout_type: Optional[str]
formation_conductivity: Optional[float]
formation_type: Optional[str]
grout_conductivity: Optional[float]
antifreeze: Optional[str]
pipe_dimension_ratio: Optional[str]
n_pipes_in_circuit: Optional[int]
n_circuits: Optional[int]
total_pipe_length: Optional[float]

To access data elements, use the dot syntax.

Note: While the oTherm data model supports multiple types of sources, this db_reader tool only supports the
vertical loop spec at present.

db_tools.otherm_db_reader.get_mfr_data(parameters)

db_tools.otherm_db_reader.get_monitoring_system(name)
Similar to get_equipment_monitoring_system() but returns monitoring_system attributes for a given mon-
itoring system by name rather than equipment being monitored. This function requires the exact name of the
monitoring system, as specified in the oTherm database

Parameters
name (str) – The name of the monitoring system

Returns
All specifications of a monitoring system in the oTherm database. Refer to oTherm documenta-
tion for detais.

Return type
dict

For more explanation of the parameters and return values, see get_equipment_monitoring_system()

4.1. db_tools package 21

oTherm GSHP analysis

4.1.4 db_tools.csv_to_yaml module

db_tools.csv_to_yaml.output_yaml(equipment_model, site_model, thermal_load_model)

22 Chapter 4. db_tools

CHAPTER

FIVE

OTHERM DATABASE FIELDS

Data Element Units Name Type
Timestamp UTC Datetime time

1 GSHP compressor W heatpump_power electric power
2 Auxiliary back up heat (Electric) W heatpump_aux electric power
3 Entering water temperature 0F source_supplytemp temperature
4 Leaving water temperature 0F source_returntemp temperature
5 Source temperature difference 0F source_tempdiff temperature difference
6 Source fluid pump power W sourcefluid_pump_power electric power
7 Source fluid flow rate gpm sourcefluid_flowrate fluid flow rate
8 Load circulating pumps/fan W load_pumpsfans electric power
9 Load supply temperature 0F load_supplytemp temperature
10 Load return temperature 0F load_returntemp temperature
11 Load temperature difference 0F load_tempdiff temperature difference
12 Thermostat set point 0F tstat_set equipment state
13 Thermostat temp 0F tstat_temp equipment state
14 Percent full load % compressor_stage equipment state
15 Heat meter load BTU loadside_heat thermal energy
16 Heat meter ground loop BTU sourceside_heat thermal energy

23

oTherm GSHP analysis

24 Chapter 5. oTherm Database Fields

CHAPTER

SIX

CREDITS AND DISCLAIMERS

6.1 About the oTherm Project

The oTherm project was initiated as part of discussions in the Renewable Thermal Alliance (RTA) and initiated with
an RTA Innovation Grant to the University of New Hampshire (UNH) to begin work on data dictionaries. Subse-
quently, UNH partnered with the New York State Research and Development Authority (NYSERDA) and the Yale
Center for Business and the Environment to secure a grant from the U.S. Department of Energy, Office of State Energy
Programs(DE-EE0008619) to build a functional prototype. The UNH Interoperability Lab has been instrumental in
the development work throughout the process.

6.2 Disclaimer

These materials were prepared as an account of work sponsored by an agency of the United States Government. Neither
the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

25

oTherm GSHP analysis

26 Chapter 6. Credits and Disclaimers

CHAPTER

SEVEN

INDICES AND TABLES

• genindex

• modindex

• search

27

oTherm GSHP analysis

28 Chapter 7. Indices and tables

PYTHON MODULE INDEX

a
analysis.daily_summaries, 7
analysis.ewt_violins, 8
analysis.kwh_per_sf, 9
analysis.load_factor, 10
analysis.load_summary, 8
analysis.spf_with_uncertainty, 12
analysis.time_of_day_usage, 15

d
db_tools.csv_to_yaml, 22
db_tools.otherm_db_reader, 17

29

oTherm GSHP analysis

30 Python Module Index

INDEX

A
analysis.daily_summaries

module, 7
analysis.ewt_violins

module, 8
analysis.kwh_per_sf

module, 9
analysis.load_factor

module, 10
analysis.load_summary

module, 8
analysis.spf_with_uncertainty

module, 12
analysis.time_of_day_usage

module, 15

C
create_daily_summaries() (in module analy-

sis.daily_summaries), 8

D
db_tools.csv_to_yaml

module, 22
db_tools.otherm_db_reader

module, 17
determine_mode() (in module analysis.ewt_violins), 8

E
elec_error_single_elec_measurement() (in mod-

ule analysis.spf_with_uncertainty), 13
error_heat_from_ground() (in module analy-

sis.spf_with_uncertainty), 13
ewt_violins() (in module analysis.ewt_violins), 8

G
generate_csv() (in module analysis.load_factor), 10
get_equipment() (in module

db_tools.otherm_db_reader), 19
get_equipment_data() (in module

db_tools.otherm_db_reader), 19
get_equipment_monitoring_system() (in module

db_tools.otherm_db_reader), 19

get_mfr_data() (in module
db_tools.otherm_db_reader), 21

get_monitoring_system() (in module
db_tools.otherm_db_reader), 21

get_site_info() (in module
db_tools.otherm_db_reader), 18

get_source_specs() (in module
db_tools.otherm_db_reader), 20

get_thermal_load() (in module
db_tools.otherm_db_reader), 18

get_weather_data() (in module
db_tools.otherm_db_reader), 20

H
heat_calcs_single_elec_measurement() (in mod-

ule analysis.spf_with_uncertainty), 14
hourly_daily_stats() (in module analy-

sis.time_of_day_usage), 15

K
kwh_vs_oat() (in module analysis.kwh_per_sf), 9

L
lag_temps() (in module analysis.spf_with_uncertainty),

12
load_summary_graph() (in module analy-

sis.load_summary), 8

M
module

analysis.daily_summaries, 7
analysis.ewt_violins, 8
analysis.kwh_per_sf, 9
analysis.load_factor, 10
analysis.load_summary, 8
analysis.spf_with_uncertainty, 12
analysis.time_of_day_usage, 15
db_tools.csv_to_yaml, 22
db_tools.otherm_db_reader, 17

monthly_ground_heat() (in module analy-
sis.spf_with_uncertainty), 15

31

oTherm GSHP analysis

O
output_yaml() (in module db_tools.csv_to_yaml), 22

T
to_kilowatts() (in module analy-

sis.spf_with_uncertainty), 12
total_heat_sum_error() (in module analy-

sis.spf_with_uncertainty), 14

32 Index

	oTherm Project
	Modules
	analysis
	analysis package
	Modules
	analysis.daily_summaries module
	analysis.load_summary module
	analysis.ewt_violins module
	analysis.geoexchange_proxies module
	analysis.hp_mfr_plots module
	analysis.kwh_per_sf module
	analysis.load_factor module
	analysis.spf_with_uncertainty module
	analysis.time_of_day_usage module

	db_tools
	db_tools package
	Modules
	db_tools.influx_lp_writer module
	db_tools.otherm_db_reader module
	db_tools.csv_to_yaml module

	oTherm Database Fields
	Credits and Disclaimers
	About the oTherm Project
	Disclaimer

	Indices and tables
	Python Module Index
	Index

