

oTherm GSHP Documentation

otherm_gshp is a collection of Python scripts to analyze data from an oTherm database instance that use ground source heat pumps as the sole source of renewable thermal energy.

[image: Alternative text]

Contents:

	oTherm Project

	Modules

	analysis
	analysis package

	db_tools
	db_tools package

	oTherm Database Fields

	Credits and Disclaimers
	About the oTherm Project

	Disclaimer

Indices and tables

	Index

	Module Index

	Search Page

oTherm Project

The oTherm project aims to standardize data collection methods for renewable thermal energy (RTE) systems, such as heat pumps
(air-source and ground-source), solar thermal, and biomass systems. While the initial focus on the project has focused
on ground source heat pump systems, the framework is extensible to other types of RTE systems.

Some of the challenges in the monitoring and verification (M&V) of RTE systems include:

	necessity for continuous data (approximately 1-minute resolution) of system energy flows, both thermal and electric power

	need to continously monitor the temperature of the renewable thermal source

	need to contextualize observations with respect to the equipment, the building envelope and outdoor weather conditions

	documentation of sensor accuracies for the quantification of uncertainty, which can be significant in RTE systems

These challenges often limit the number of facilities that can be included in an M&V program, most often ranging
from 3 - 24, and make it exceeding difficult to combine data from multiple studies.

The oTherm project establishes a standarized data framework and software necessary to efficiently collect and analyze
data within a given M&V program. With the standardization of the data models, data from separate M&V program can
be easily included into cross-program analyses.

[image: Alternative text]
The initial work has been funded by the Renewable Thermal Alliance and the New York State Energy Research & Development
Authority. Continued work has been supported by the US Department of Energy, Office of State Energy Programs. The collaborative
research has been led by the University of New Hampshire in coordination with the Yale School for the Environment.

Modules

The modules support the back-end interactions with an oTherm instance. They are provided as examples only.

analysis

This set of analysis modules uses the oTherm APIs to access oTherm data. See the API Documentation <https://otherm.org/api_documentation>
for more details. The more complex oTherm data is organized into dataclasses that use that are ready for analysis. For example,

 @dataclass
 class ThermalLoad:
 uuid: str
 name: str
 description: Optional[str]
 conditioned_area: float
 heating_design_load: float
 cooling_design_load: float
 heating_design_oat: float
 cooling_design_oat: float

	analysis package
	Modules

	analysis.daily_summaries module
	create_daily_summaries()

	analysis.load_summary module
	load_summary_graph()

	analysis.ewt_violins module
	determine_mode()

	ewt_violins()

	analysis.geoexchange_proxies module

	analysis.hp_mfr_plots module

	analysis.kwh_per_sf module
	kwh_vs_oat()

	analysis.load_factor module
	generate_csv()

	analysis.spf_with_uncertainty module
	lag_temps()

	to_kilowatts()

	error_heat_from_ground()

	elec_error_single_elec_measurement()

	heat_calcs_single_elec_measurement()

	total_heat_sum_error()

	monthly_ground_heat()

	analysis.time_of_day_usage module
	hourly_daily_stats()

db_tools

A collection of scripts that enable uploading and downloading of data from an oTherm instance

	db_tools package
	Modules

	db_tools.influx_lp_writer module

	db_tools.otherm_db_reader module
	get_site_info()

	get_thermal_load()

	get_equipment()

	get_equipment_data()

	get_equipment_monitoring_system()

	get_weather_data()

	get_source_specs()

	get_mfr_data()

	get_monitoring_system()

	db_tools.csv_to_yaml module
	output_yaml()

analysis package

The analysis packages provided provide some examples of the potential uses of oTherm GSHP data. These are provided as is and have the following limitations:

	Each site has a single heat pump. The analyses presented can, in the future, be extended to multiple pieces of equipment.

Modules

analysis.daily_summaries module

Calculation of daily performance metrics for a given piece of equipment (e.g. a heat pump). This function is also
embedded in oTherm instance and can be updated daily as a cron job. Included here to document methods and allow
for customization.

	Daily metrics include, each integrated for one day:
	
	Heating and cooling degree days, relative to 65F base temperature

	Heat pump run time (hours)

	Heat pump energy usage (kWh)

	Auxiliary heat energy usage (kWh)

	Thermal energy generated by heat pump under heating and cooling modes (MBtu)

	Thermal energy exchanged with the ground (MBtu)

	Average outdoor air temperature (F)

	Source minimum and maximum temperatures (F)

	Number of monitoring records for day

Note

Modifying this script will not change calculations in oTherm instance. See oTherm instance administrator to update
codebase.

	
analysis.daily_summaries.create_daily_summaries(data, heatpump_threshold_watts)

	
	Parameters:

	
	data (pandas.DataFrame) – Heat pump operating data from oTherm db

	heatpump_threshold_watts (float) – Threshold to determine if heat pump is on or off.

	Returns:

	
	pandas.DataFrame

	The returned DataFrame contains daily summary metrics described above

analysis.load_summary module

	
analysis.load_summary.load_summary_graph(site, thermal_load, ds)

	
	Parameters:

	
	ds (DataFrame) – Pandas ddataframe containing daily summaries

	site (dict) – Dataclass object containing site information

analysis.ewt_violins module

Creates histograms of the heat pump entering water temperature averaged on hourly intervals using the Seaborn library.
When multiple site names are provided, histograms are plotted along the x axis and labeled with the site name.

When multiple sites are plotted, the seaborn.violinplot parameters are set to prodcue histograms that are equal width
with the area of each mode scaled to the relative number of hours in heating or cooling.

	
analysis.ewt_violins.determine_mode(row)

	
	Parameters:

	row – a row in a pandas DataFrame

	Returns:

	new column in the DataFrame, that identifies when heat pump is heating or cooling

	
analysis.ewt_violins.ewt_violins(site_names, start_date, end_date, db)

	
	Parameters:

	
	site_names (list) – A list of site names to include in analyis. Each site will have it’s own violin plot

	start_date (str) – Start date of analysis in format ‘YYYY-MM-DD’

	end_date (str) – End date of analysis in format ‘YYYY-MM-DD’

	timezone (str) – Timezone of installation

	db (str) – oTherm database to use for analysis

	Returns:

	The image is written to a file in the ../temp_files directory

	Return type:

	image file

Example output:

[image: Example violin plots that show histograms of the entering water temperature under heating and cooling modes.]

analysis.geoexchange_proxies module

analysis.hp_mfr_plots module

analysis.kwh_per_sf module

One particularly helpful analysis that can be accomplished with very simple monitoring equipment is the energy usage as a function of conditioned area and outdoor air temperature. One application of this analysis offers an opportunity to compare the efficiency of different technologies, such as air-source and ground-source heat pumps over a wide range of outdoor weather conditions (e.g., Ueno and Loomis, 2015).

This module creates a scatterplot of energy use intensity as a function of average daily
outdoor air temperature.

	
analysis.kwh_per_sf.kwh_vs_oat(site_names, start_date, end_date, db)

	
	Parameters:

	
	site_names (list) – List of site names, as strings

	start_date (str) – Beginning date of request, such as ‘2015-01-01’

	end_date (str) – End date of request

	symbol_colors (dict) – Dictionary of colors for graph symbols with site name as keys

	db (str) – The name of the database to pull operating data from

Example output:

[image: Example plot of time of energy use intensity as a function of outdoor air temperature]

analysis.load_factor module

Because adoption of GSHP systems will often replace fossil-fuel fired systems and represent more energy intensive appliances in a home, electric utilities are also interested in the load factors for typical residential GSHP systems and the month-to-month variation in load factors over the course of a year. For the purposes here, the load factor is defined as the ratio of the electricity consumed over a period of time, such as one month, to the consumption that would have occurred if the peak demand operated over the entire month. The load factor ranges from 0 to 1, with higher values representing more uniform and predictable demand.

\[Load Factor = \frac{kWh_{used \: in \: period}}{{kW_{peak} \cdot (hours \: in \: period)} }\]

Note

runs correctly with limited oTherm data, still needs full testing

	
analysis.load_factor.generate_csv(data, site_name)

	
	Parameters:

	
	data (pandas.DataFrame) – Heat pump operating data with datetime index

	site_name (str) – Name of the site to analyze. At present, assumes a single heat pump at each site.

	Returns:

	Produces a csv file with the following columns:

	month_and_year

	year and month of analysis

	Compressor (kWh)

	total energy consumption of compressor

	Auxiliary (kWh)

	total energy consumption of compressor

	Total Load (kWh)

	sum of Compressor and Auxiliary energy consumption

	Compressor Peak (hourly)

	peak hourly electric power (kW) for compressor

	Auxiliary Peak (hourly)

	peak hourly electric power (kW) for auxiliary

	Total Peak (hourly)

	peak hourly electric power (kW) over period

	Load Factor (Total)

	calculated load factor for month

	intervals

	number of 1-minute interval data over month

	completeness

	number of intervals divided by minutes in month

	Return type:

	csv file

analysis.spf_with_uncertainty module

The seasonal performance factor (SPF) is a metric used to evaluate the performance of installed heat pumps. SPF values
are sometimes separated into monthly values or values binned on ranges of entering water temperatures.

In heating mode, the SPF is calculated similarly to the COP. The difference is that COP values are determined under
laboratory conditions while the SPF values are calculated using real-world operational data. Further, while COPs are
measured with laboratory-grade equipment, calculation of SPFs may use estimated or proxy values in lieu of measured values,
depending on the availability and quality of data. The heating SPF is calculated as the ratio of the heating or
cooling provided and the electricity used to generate the heating or cooling:

\[SPF=\frac{\text{Heating or Cooling Provided [kWh]}}{\text{Electricity Used [kWh]}}\]

When calculating SPF values, it is important to note the boundaries of the analysis. Spitler and Gehlin (2020) build
upon the SEPEMO boundaries defined by Nordman and others (2012) to delineate a set of nested boundaries the include
successively more components of the system.

Uncertainty Analysis
One of the primary challenges in analyzing SPF values and comparing them between systems or with laboratory-rate COP
values is the uncertainty associated with measurements used to calculate the SPF values. All measurements have some
degree of associated uncertainty, but field measurements used to calculate SPF values generally are obtained with lower
quality sensors than those used the laboratory to calculate COP values. As a result, they have a larger uncertainty due
to sensor bias. Most studies that report measured performance (COP or SPF) do not quantify uncertainty (e.g.,
Puttagunta et al., 2010; Huelman et al., 2016) even though it can be significant.

Uncertainty due to sensor bias can be absolute or fractional. Absolute uncertainty has the same units as the value being
measured. Fractional uncertainty is a fraction of the measured value. While the sensor bias for a given sensor will be
constant, the impact on the uncertainty of the calculated SPF depends on the measured value, which changes in time. This
is of particular concern with the uncertainty of a measure of temperature difference.

Calculating the SPF of GSHP systems relies on quantifying the geoexchange (thermal energy exchanged with the subsurface)
and the electricity used by the GSHP system. Quantifying the geoexchange requires taking the product of density and
specific heat capacity of the heat transfer fluid, the mass flow rate of the heat transfer fluid, and the temperature
change of the heat transfer fluid across the heat pump. The uncertainties in the density and specific heat capacity
values are very small relative to the other uncertainties and are typically ignored (Spitler et al., in prep). The
temperature change of the heat transfer fluid has a constant absolute uncertainty, meaning that the true temperature
change is within a fixed number of degrees from the measured value. Electricity usage measurements can have a fractional
or absolute uncertainty, depending on the measurement method.

Because the uncertainty of geoexchange and the electrical consumption of the GSHP system (EQ and Ew, respectively) can
change depending on the actual conditions, the uncertainty must be calculated separately for each timestep in the
period of interest. Following Taylor (1997), the fractional uncertainty for thermal energy exchanged with the subsurface
and the electrical consumption (eQ and eW, respectively) can then be calculated as:

\[\begin{align}\begin{aligned}e_{Q,n}= \frac{\sum_{i=1}^{n}E_{Q,n}}{\sum_{i=1}^{n}Q_i}\\e_{W,n}= \frac{\sum_{i=1}^{n}E_{W,n}}{\sum_{i=1}^{n}W_i}\end{aligned}\end{align} \]

Where Qi and Wi are the measured values of the geoexchange and electrical consumption, respectively. The quantities
are summed over n time intervals, typically each 1-minute in duration.

The fractional uncertainty of the SPF value can then be obtained by adding the fractional uncertainties of the thermal
energy exchanged with the subsurface and the electrical consumption of the GSHP system in quadrature:

\[e_{SPF,n}=\ \sqrt(e_{Q,n}^2+e_{W,n}^2\)\]

While this description of uncertainty analysis focuses on SPF calculations, as they involve multiple types of
measurements, uncertainty analysis should also be performed when calculating and reporting other key performance
indicators.

Example output:

[image: Example seasonal performance factor (SPF) with uncertainty for heating mode]
@author: Ryan Chase, University of New Hampshire

	
analysis.spf_with_uncertainty.lag_temps(initial_data)

	Lag temperature measurements by one value. Necessary for on-pipe measurements.
Assumes that operating data is at minute-resolution and thermal response of temperature sensors is
approximately one minute.

	Parameters:

	initial_data (pd.DataFrame) – Data as initially pulled from database.

	Returns:

	Dataframe with lagged temperature measurements. Additional column
is as follows:

	DeltaT

	circulating fluid temperature change (as float)

	Return type:

	pd.DataFrame

	
analysis.spf_with_uncertainty.to_kilowatts(data, derate, power_fac)

	Unit conversion and electricity usage/heat rate adjustments.

Converts heat flow from btu/hr to kW and electricity from W to kW.
Scales heat flow and electricity consumption values.

	Parameters:

	
	data (pd.DataFrame) – Heat pump operational data.

	derate (float) – Scales heat flow values.

	power_fac (float) – Scales electricity usage.

	Returns:

	Dataframe with unit conversion and necessary scaling applied to
electricity usage and heatflow. Additional columns are
as follows:

	q

	heat flow in kW with scaling (as float)

	kw_used

	electricity usage in kW with scaling (as float)

	Return type:

	pd.DataFrame

	
analysis.spf_with_uncertainty.error_heat_from_ground(mrl_hr, E_deltaT, e_v, data)

	Calculates error associated with heat transfer from ground.

Converts heat flow from btu/hr to kW and electricity from W to kW.
Scales heat flow and electricity consumption values.

	Parameters:

	
	mrl_hr (float) – Max record length in hours.

	E_deltaT (float) – Absolute uncertainty in temperature change of circulating fluid.

	e_v (float) – Flow rate fractional error.

	data (pd.Dateframe) – Heatpump operational data.

	Returns:

	Dataframe with additional columns associated with error in heat
exchange rates. Additional columns are as follows:

	e_deltaT

	fractional uncertainty deltaT (as float)

	e_q

	fractional uncertainty heat transfer rate (as float)

	E_q

	absolute uncertainty heat transfer rate (as float)

	tvalue

	date time (as datetime64[ns, UTC])

	timedelta

	time since last timestep (as timedelta64[ns])

	elapsed_hours

	hours since last timestep (as float)

	E_Q

	absolute uncertainity in kWh to/from ground (as float)

	Return type:

	pd.DataFrame

	
analysis.spf_with_uncertainty.elec_error_single_elec_measurement(e_e, error_data)

	Calculates absolute electrical error.

For datasets that include a single electricity consumption value.
Calculates absolute electrical error for each timestep in kWh.

	Parameters:

	
	e_e (float) – Fractional uncertainty of electricity usage.

	error_data (pd.Dateframe) – Heatpump operational data.

	Returns:

	Dataframe with additional column for electricity usage uncertainty.
Additional column is as follows:

	E_W

	absolute electrical uncertainity in kWh (as float)

	Return type:

	pd.DataFrame

	
analysis.spf_with_uncertainty.heat_calcs_single_elec_measurement(error_data, pump_power)

	Calculates heat flow and electricity usage during heating periods.

For datasets that include a single electricity consumption value.
Considers electricity consumption of single stage circulating pump that will not
contribute useful heat to building.

	Parameters:

	
	error_data (pd.Dateframe) – Heatpump operational data.

	pump_power (float) – Electricity consumption of single stage circulating pump.

	Returns:

	Dataframe with additional columns associated with heatflow and
electricity consumption. Additional columns are as follows:

	electricity_kWh

	electricity kWh used in heating mode (as float)

	hfg

	heat from ground in kWh (as float)

	pump_power

	pump electricity usage in Kw (as float)

	heat_provided

	heat provided to building in kWh (as float)

	Return type:

	pd.DataFrame

	
analysis.spf_with_uncertainty.total_heat_sum_error(spf_heat_data)

	Total values for heating and overall heating spf.

Uses heating operational data. Calculate total heat extracted from
ground and absolute error. Also calculates spf and fractional error.

	Parameters:

	spf_heat_data (pd.Dateframe) – Heatpump operational data during heating.

	Returns:

	
	total_ground_heat (float) – Total heat from ground in kWh.

	total_gh_error (float) – Absolute error of total heat from ground in kWh.

	total_heat_spf (float) – Heating spf.

	ah_e_spf (float) – Heating fractional uncertainity of SPF.

	
analysis.spf_with_uncertainty.monthly_ground_heat(spf_heat_data, percent_max)

	Calculates monthly heat flow and spf values for plotting.

Resamples data to monthly values.
Determines which months have signifigant heating loads to be plotted.
Calculates monthly spf values and absolute uncertainty for plotting.

	Parameters:

	
	spf_heat_data (pd.Dateframe) – Heatpump operational data during heating.

	percent_max (float) – Multipled by highest heating month to determine minimum kWh to plot.

	Returns:

	Dataframe with additional columns associated with monthly heatflow
and spf. Additional columns are as follows:

	year

	year of each timestep (as str)

	month_and_year

	year and month of each timestep (as str)

	monthly_heating_spf

	heating spf value for month (as float)

	fhe

	heating fractional uncertainity (as float)

	fee

	electric fractional uncertainity (as float)

	e_spf

	fractional uncertainity heating SPF (as float)

	E_spf

	absolute uncertainity heating SPF (as float)

	Return type:

	pd.DataFrame

analysis.time_of_day_usage module

There is a growing interest in quantifying hourly demand profiles for building heat and cooling to manage generation assets and explore models for demand-response programs (e.g., National Academies, 2021). While heat pump usage patterns tend to vary with season – with winters having higher demand in morning and summer a higher demand in the afternoon – specific usage patterns depend on preferences of building occupants and individual usage patterns. Quantifying patterns of usage across a large number of heat pumps in a given regions will help to inform utilities in forecasting weather-dependent generation patterns and identify opportunities for demand response measures.

This module calculates the aggregate statistics for kW on an hourly, time-of-day basis
Currently calculates mean and 90th quantile for each hour and creates matplotlib plot. It is currently
set up for a single year but should be extendable to multiple years.

	
analysis.time_of_day_usage.hourly_daily_stats(site, hp_data)

	
	Parameters:

	
	site –

	hp_data –

Example output:

[image: Example plot of time of day usage for a site with the ground source heat pump]

db_tools package

Modules

There are two essential database scripts. The first is to write a set of influxDB line protocol text files that
can be uploaded to the oTherm database, and the second is a set of functions that use API requests to retrieve
and store data into local pandas.DataFrame and dataclass objects.

db_tools.influx_lp_writer module

db_tools.otherm_db_reader module

A collection of functions that use oTherm APIs to retrieve data from an oTherm instance. The typical application
is to first retrieve the site data. Then, using the site dataclass object, retrieve information about the:

	weather_station,

	thermal_load,

	monitoring_system, and

	heat_pump_data.

The tools also contain scripts for:

	Retrieving the specifications for any oTherm monitoring system by the name of the monitoring system, and

	Retrieving heat pump peformance data from a local SQLite database (note, the SQLite database is not part
of the oTherm database.

Note

The names and types of data elements used in the analyses differ from the oTherm data model specification.

The dataclass objects use for analysis are constructed from json objects returned from the oTherm database.
However, because the dataclass objects represent a single instance, the data elements are reorganized into
a simpler representation than the original json response.

Example

The input typically consists of a site_name and start and end dates. The functions can be called from analyses
modules. For example

site_name = 'GES649'
start_date = '2015-01-01'
end_date = '2021-01-01'

#Get site information
site = get_site_info(site_name)

#Get equipment information and dataframe of heat pump operating data
equipment, hp_data = get_equipment_data(site.id, start_date, end_date, site.timezone)

#Get monitoring system information and measurement specifications
equip_monitoring_system = get_equipment_monitoring_system(equipment.id)

#Get weather data for station
wx_data = get_weather_data(site.weather_station.nws_id, site.timezone, start_date, end_date)

#Get thermal source specifications
source_specs = get_source_specs(site)

	
db_tools.otherm_db_reader.get_site_info(site_name, db)

	get site info docstring

	Parameters:

	site_name (str) – name of oTherm site

	Returns:

	The site object consists is a nested dataclass object

@dataclass
class Site:
 id: int
 name: str
 city: str
 state: str
 timezone: str
 thermal_load: ThermalLoad
 weather_station: WeatherStation

To access data elements, use the dot syntax. For example, the Weather Station ID, is accessed by

>>> site.weather_station
'KPSM'

	
db_tools.otherm_db_reader.get_thermal_load(site, db)

	
	Dataclass object with equipment specifications ::
	@dataclass
class ThermalLoad:

uuid: str
name: str
description: Optional[str]
conditioned_area: float
heating_design_load: float
cooling_design_load: float
heating_design_oat: float
cooling_design_oat: float

To access data elements, use the dot syntax. For example, the Weather Station ID, is accessed by

	
db_tools.otherm_db_reader.get_equipment(site_id, db)

	Uses ‘request’ method to read equipment table for a specific site

	Parameters:

	site_id (int) – The site_id in the PostgreSQL database. Can be obtained from site.id

	Returns:

	Equipment dataclass contains equipment information in the following fields

@dataclass

	class Equipment:
	id: int
uuid: str
model: str
description: Optional[str]
no_flowmeter_flowrate: float
type: int
site: int
manufacturer: int

	
db_tools.otherm_db_reader.get_equipment_data(site_id, start_date, end_date, timezone, db)

	Uses ‘request’ method to reads heat pump operating data from otherm influx database and returns a pandas dataframe.
The data DataFrame returned includes all records for the equipment at a site. At present, the script is limited
to a single piece of equipment at a site.

	Parameters:

	
	site_id (int) – The site_id in the PostgreSQL database. Can be obtained from site.id

	start_date (str) – start date (e.g. 2018-1-1)

	end_date (str) – end date (e.g. 2018-12-31)

	timezone (str) – (e.g. ‘US/Eastern’)

	Returns:

	Equipment dataclass contains equipment information in the following fields:

@dataclass
class Equipment:
 id: int
 uuid: str
 model: str
 description: Optional[str]
 no_flowmeter_flowrate: float
 type: int
 site: int
 manufacturer: int

pandas.DataFrame containing heat pump operating data over the specified time range. The DataFrame contains
all fields stored for the piece of equipment in the influxDB database.

Note

The index of the DataFrame is set to the time field and localized according the site.timezone attribute

	
db_tools.otherm_db_reader.get_equipment_monitoring_system(equip_id)

	Retrieves the equipment monitoring system and specifications

	Parameters:

	uuid (str) – uuid of thermal equipment

	Returns:

	Dataclass object with equipment monitoring system specifications

@dataclass
class MonitoringSysInfo:
 id: int
 name: Optional[str]
 description: Optional[str]
 specs: list

@dataclass
class EquipmentMonitor:
 id: int
 start_date: str
 end_date: Optional[str]
 equip_id: int
 monitoring_system_spec: int
 info: MonitoringSysInfo

To access data elements, use the dot syntax. For example, the list containing the monitoring system specifications
can be accessed by

>>> monitoring_system.info.specs
`[{'measurement_spec': {'name': 'HPP VA W 8% EP', 'description': 'Heat pump power, volt-amps, electrical panel', ...`

The monitoring system specifications is a list of measurements performed by the monitoring system, each measurement
has its own set of specifications. See oTherm documentation for more details.

The list can be search for individual measurements specifications with utilities.get_measurement_specs

	
db_tools.otherm_db_reader.get_weather_data(nws_id, timezone, start_date, end_date)

	
	Parameters:

	
	nws_id (str) – National Weather Station 4 character station identifier

	timezone (str) – Timezone of site, such as ‘US/Eastern’

	start_date (str) – Beginning date of request, such as ‘2015-01-01’

	end_date (str) – End date of request

	Returns:

	
	
	pandas.DataFrame
	
	The returned DataFrame contains weather station data over the specified time range and contains all fields stored for the weather station.

Note

The index of the DataFrame is set to the time field and localized according the site.timezone attribute

	
db_tools.otherm_db_reader.get_source_specs(site)

	Retrieves the source specifications.

	Parameters:

	site (str) – site name

	Returns:

	Dataclass object with source specifications

@dataclass
class SourceSpec:
 site: str
 site_id: int
 source_name: str
 source_type: str
 description: str
 freeze_protection: Optional[float]
 grout_type: Optional[str]
 formation_conductivity: Optional[float]
 formation_type: Optional[str]
 grout_conductivity: Optional[float]
 antifreeze: Optional[str]
 pipe_dimension_ratio: Optional[str]
 n_pipes_in_circuit: Optional[int]
 n_circuits: Optional[int]
 total_pipe_length: Optional[float]

To access data elements, use the dot syntax.

Note

While the oTherm data model supports multiple types of sources, this db_reader tool only supports
the vertical loop spec at present.

	
db_tools.otherm_db_reader.get_mfr_data(parameters)

	

	
db_tools.otherm_db_reader.get_monitoring_system(name)

	Similar to get_equipment_monitoring_system() but returns monitoring_system attributes for a given monitoring
system by name rather than equipment being monitored. This function requires the exact name of the monitoring
system, as specified in the oTherm database

	Parameters:

	name (str) – The name of the monitoring system

	Returns:

	All specifications of a monitoring system in the oTherm database. Refer to oTherm documentation for detais.

	Return type:

	dict

For more explanation of the parameters and return values, see get_equipment_monitoring_system()

db_tools.csv_to_yaml module

	
db_tools.csv_to_yaml.output_yaml(equipment_model, site_model, thermal_load_model)

	

oTherm Database Fields

	
	Data Element

	Units

	Name

	Type

	
	Timestamp

	UTC

	Datetime

	time

	1

	GSHP compressor

	W

	heatpump_power

	electric power

	2

	Auxiliary back up heat (Electric)

	W

	heatpump_aux

	electric power

	3

	Entering water temperature

	⁰F

	source_supplytemp

	temperature

	4

	Leaving water temperature

	⁰F

	source_returntemp

	temperature

	5

	Source temperature difference

	⁰F

	source_tempdiff

	temperature difference

	6

	Source fluid pump power

	W

	sourcefluid_pump_power

	electric power

	7

	Source fluid flow rate

	gpm

	sourcefluid_flowrate

	fluid flow rate

	8

	Load circulating pumps/fan

	W

	load_pumpsfans

	electric power

	9

	Load supply temperature

	⁰F

	load_supplytemp

	temperature

	10

	Load return temperature

	⁰F

	load_returntemp

	temperature

	11

	Load temperature difference

	⁰F

	load_tempdiff

	temperature difference

	12

	Thermostat set point

	⁰F

	tstat_set

	equipment state

	13

	Thermostat temp

	⁰F

	tstat_temp

	equipment state

	14

	Percent full load

	%

	compressor_stage

	equipment state

	15

	Heat meter load

	BTU

	loadside_heat

	thermal energy

	16

	Heat meter ground loop

	BTU

	sourceside_heat

	thermal energy

Credits and Disclaimers

About the oTherm Project

The oTherm project was initiated as part of discussions in the Renewable Thermal
Alliance (RTA) and initiated with an RTA Innovation Grant to the University of New
Hampshire (UNH) to begin work on data dictionaries. Subsequently, UNH partnered with
the New York State Research and Development Authority (NYSERDA) and the Yale Center
for Business and the Environment to secure a grant from the U.S. Department of Energy,
Office of State Energy Programs(DE-EE0008619) to build a functional prototype. The
UNH Interoperability Lab has been instrumental in the development work throughout the
process.

Disclaimer

These materials were prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency thereof,
nor any of their employees, makes any warranty, express or implied, or assumes any
legal liability or responsibility for the accuracy, completeness, or usefulness of
any information, apparatus, product, or process disclosed, or represents that its
use would not infringe privately owned rights.

Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise does not necessarily constitute or imply
its endorsement, recommendation, or favoring by the United States Government or
any agency thereof. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or any agency
thereof.

 Python Module Index

 a |
 d |
 u

 		 	

 		
 a	

 	[image: -]
 	
 analysis	

 	
 	
 analysis.daily_summaries	

 	
 	
 analysis.ewt_violins	

 	
 	
 analysis.kwh_per_sf	

 	
 	
 analysis.load_factor	

 	
 	
 analysis.load_summary	

 	
 	
 analysis.spf_with_uncertainty	

 	
 	
 analysis.time_of_day_usage	

 		 	

 		
 d	

 	[image: -]
 	
 db_tools	

 	
 	
 db_tools.csv_to_yaml	

 	
 	
 db_tools.otherm_db_reader	

 		 	

 		
 u	

 	[image: -]
 	
 utilities	

 	
 	
 utilities.df_plots	

 	
 	
 utilities.df_processing	

 	
 	
 utilities.get_measurement_spec	

 	
 	
 utilities.misc_functions	

 	
 	
 utilities.save_responses_as_csv	

Index

 A
 | C
 | D
 | E
 | F
 | G
 | H
 | K
 | L
 | M
 | O
 | S
 | T
 | U

A

 	
 	
 analysis.daily_summaries

 	module

 	
 analysis.ewt_violins

 	module

 	
 analysis.kwh_per_sf

 	module

 	
 analysis.load_factor

 	module

 	
 	
 analysis.load_summary

 	module

 	
 analysis.spf_with_uncertainty

 	module

 	
 analysis.time_of_day_usage

 	module

C

 	
 	C_to_F() (in module utilities.misc_functions)

 	
 	create_daily_summaries() (in module analysis.daily_summaries)

D

 	
 	
 db_tools.csv_to_yaml

 	module

 	
 db_tools.otherm_db_reader

 	module

 	
 	determine_mode() (in module analysis.ewt_violins)

 	(in module utilities.df_processing)

E

 	
 	elec_error_single_elec_measurement() (in module analysis.spf_with_uncertainty)

 	error_heat_from_ground() (in module analysis.spf_with_uncertainty)

 	
 	ewt_violin() (in module utilities.df_plots)

 	ewt_violins() (in module analysis.ewt_violins)

F

 	
 	F_to_C() (in module utilities.misc_functions)

 	
 	find_measurement_spec() (in module utilities.get_measurement_spec)

G

 	
 	generate_csv() (in module analysis.load_factor)

 	get_equipment() (in module db_tools.otherm_db_reader)

 	get_equipment_data() (in module db_tools.otherm_db_reader)

 	get_equipment_monitoring_system() (in module db_tools.otherm_db_reader)

 	get_mfr_data() (in module db_tools.otherm_db_reader)

 	
 	get_monitoring_system() (in module db_tools.otherm_db_reader)

 	get_site_info() (in module db_tools.otherm_db_reader)

 	get_source_specs() (in module db_tools.otherm_db_reader)

 	get_thermal_load() (in module db_tools.otherm_db_reader)

 	get_weather_data() (in module db_tools.otherm_db_reader)

 	get_wr_as_dataframe() (in module utilities.save_responses_as_csv)

H

 	
 	heat_calcs_single_elec_measurement() (in module analysis.spf_with_uncertainty)

 	
 	hourly_daily_stats() (in module analysis.time_of_day_usage)

K

 	
 	kwh_vs_oat() (in module analysis.kwh_per_sf)

L

 	
 	lag_temps() (in module analysis.spf_with_uncertainty)

 	(in module utilities.df_processing)

 	
 	load_summary_graph() (in module analysis.load_summary)

M

 	
 	
 module

 	analysis.daily_summaries

 	analysis.ewt_violins

 	analysis.kwh_per_sf

 	analysis.load_factor

 	analysis.load_summary

 	analysis.spf_with_uncertainty

 	analysis.time_of_day_usage

 	db_tools.csv_to_yaml

 	db_tools.otherm_db_reader

 	utilities.df_plots

 	utilities.df_processing

 	utilities.get_measurement_spec

 	utilities.misc_functions

 	utilities.save_responses_as_csv

 	
 	monthly_ground_heat() (in module analysis.spf_with_uncertainty)

O

 	
 	output_yaml() (in module db_tools.csv_to_yaml)

S

 	
 	save_responses_csv() (in module utilities.save_responses_as_csv)

T

 	
 	to_kilowatts() (in module analysis.spf_with_uncertainty)

 	
 	total_heat_sum_error() (in module analysis.spf_with_uncertainty)

U

 	
 	
 utilities.df_plots

 	module

 	
 utilities.df_processing

 	module

 	
 utilities.get_measurement_spec

 	module

 	
 	
 utilities.misc_functions

 	module

 	
 utilities.save_responses_as_csv

 	module

Code Overview

 @dataclass
 class ThermalLoad:
 uuid: str
 name: str
 description: Optional[str]
 conditioned_area: float
 heating_design_load: float
 cooling_design_load: float
 heating_design_oat: float
 cooling_design_oat: float

utilities package

Modules

utilities.df_plots module

	
utilities.df_plots.ewt_violin(df)

	
cut and paste – untested

	Parameters:

	df –

	Returns:

	

utilities.df_processing module

Dataframe processing functions

	
utilities.df_processing.determine_mode(row)

	
	Parameters:

	row – a row in a pandas DataFrame

	Returns:

	Two new columns in the DataFrame, one that identifies when heat pump is heating
the other when heat pump is cooling

	
utilities.df_processing.lag_temps(data)

	

utilities.misc_functions module

Created on Wed Aug 23 11:40:50 2017

@author: gxdata

miscellaneous functions that may be needed from several unh_modules

	
utilities.misc_functions.C_to_F(C)

	

	
utilities.misc_functions.F_to_C(F)

	

utilities.save_responses_as_csv module

	
utilities.save_responses_as_csv.get_wr_as_dataframe(installation_id, start, end, columns)

	

	
utilities.save_responses_as_csv.save_responses_csv()

	

utilities.get_measurement_spec module

Finds the dictionary for the measurement specification based on the name of the measurement.

	
utilities.get_measurement_spec.find_measurement_spec(monitoring_system_specs, measurement_type)

	Scans the list of specs and returns dictionary of specifications for the named measurement type

	Parameters:

	
	monitoring_system_specs (list) – The list of all measurement specs for a monitoring system

	measurement_type (str) – The name of the measurement type to be located

	Returns:

	measurement specifications

	Return type:

	dict

 _images/kwh_per_sf_v_oat.png
KWh/SF per day

0035

0030

0025

0020

0015

0010

0.005

0.000

Heat Pump kWh/Square Feet vs. Outdoor Air Temperature

bcb7
f006.

o767
6eco

‘Average Daily Outdoor Air Temperature [*]

_images/oTherm_GSHP.jpeg
Renewable Thermal

Facility
MsP MspP
* Owner Contractor
Monitoring Portal Portal
system -i

Monitoring
Service
Provider
(MsP)

Weather Service

T
Owner Privacy

M&V Program
Management

Q

Design & Installation

Facility Data with
Pl

_images/ewt_violin_plots.png
EWT[*F]

70

60

50

40

30

Mode
B Heating
B Cooling

01886

03561 03824
site

06018

_images/time_of_day_usage.png
n
o~

N—

o~
~

o~
N~

—— Winter q90
o
a

N Winter
N Spring

BN summer

 Fall

@
—

<+ n o~
I]

OCHANMTINOND®O O M
[J= IS]

14

° @ o T N
- o o o o
[Mm] puewaq ApnoH abeany

124
0.0 -

Hour of Day

_images/oTherm_flow_schematic.png
Weather

Sensor
Data
oTherm
Data Best S,
Models Practices User Interface
Documentation
E
Building Sy':;,gnys

Information Standardization Implementation

_images/spf_plots.png
Monthly Heating Seasonal Performance Factors (SPF)

== Monthly Heating SPF

© 0 - m
4ds Aluauow

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 oTherm GSHP Documentation

 		
 oTherm Project

 		
 Modules

 		
 analysis

 		
 analysis package

 		
 Modules

 		
 analysis.daily_summaries module

 		
 analysis.load_summary module

 		
 analysis.ewt_violins module

 		
 analysis.geoexchange_proxies module

 		
 analysis.hp_mfr_plots module

 		
 analysis.kwh_per_sf module

 		
 analysis.load_factor module

 		
 analysis.spf_with_uncertainty module

 		
 analysis.time_of_day_usage module

 		
 db_tools

 		
 db_tools package

 		
 Modules

 		
 db_tools.influx_lp_writer module

 		
 db_tools.otherm_db_reader module

 		
 db_tools.csv_to_yaml module

 		
 oTherm Database Fields

 		
 Credits and Disclaimers

 		
 About the oTherm Project

 		
 Disclaimer

_static/plus.png

